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The paper establishes the following theorem of elementary Number Theory: Let G,y
(n m = m1m2. (m1rll!2) = 1
and let
(2) a, be a primitive root mod my (i =1,2) .
We also assume that
(3) the modulus m = mym, admits no primitive root.

By the Chinese Remainder Theorem applied twice we determine the solutions b1 and
b2 of the two pairs of congruences

b1 = a, mod m,, b2 = 1 mod my .,

b
1
Then every element N of a reduced residue system mod m is furnished just once by

the congruences

1 mod m,y, b2 a, mod m, .

X4, X2
(4) Nzb by"mdm (N2 1, N gm=-1,
where
(5) x1 = 0;1;---;’(!\1) - 1, 82 = op‘r“'»’(mz) -1 ’

where ¢(m) 1s the Euler function.

We define the index of N mod m as the 2-dim. vector
(6) ind N = (x1,x2).
Since bi is a primitive root mod m m, (i = 1,2) we can modify x4 mod ’(mi)
(1 = 1,2).

The 1 - 1 mapping {N} ¢» {(x,,xz)}. established by (4), between the
multiplicative group {N} mod m and the additive group {(x‘.xz)) (mod ¢(m,),

mod c(mz)) is an isomorphism.

Using this theorem the paper concludes with the construction of a circular
slide-rule for the modulus m = 100, which admits no primitive root.

AMS (MOS) Subject Classificationa: 10A10, 10A99
Key Words: Indices mod m as vectors, A circular slide-rule mod 100

Work Unit Number 6 (Miscellaneous Topics)
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- SIGNIFICANCE AND EXPLANATION

“The paper defines indices for a modulus m which admits no primitive
,ubl e ,,i! S”b ;

root, like the modulus m = 100. If m = mym,, with (my,my) = 1, and if

L Sk LIPS "a

my has the primitive root ay, and mj has the primitive root aj, then

»

© s

the index of a number N, with (N,m) = 1, 1is defined by an appropriate 2~

dimensional vector.

I R

As an example we choose m = 100, my = 4, mé = 25. The paper concludes

with the construction of a circular slide-rule for the modulus m = 100.
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ON THE THREORY ARD PRACTICE OF MULTI-DIM. INDICES mod m. ::
'
A CIRCULAR SLIDE~RULE FOR THE MODULUS = = 100
g
. I. J. Schoonbotg v :|
‘ ]
UM
' ':
1. INTRODOCTION. I wrote recently the note [2) on the Chinese Remainder Theorem :l:
(abbreviated to C.R.T.) which seems suitable as an elementary introduction to this
o
important topic. The present note was written in connection with a one-semester course on
elementary Number Theory given in 1975 at the San Diego State University. It was submitted \:»
:
then to the Classroom Notes section of the A. M. Monthly through its new editor R. A. v
Brualdi, but somehow it was forgotten. I found it now and wish to publish it as an ~*‘
attractive sequel to my first note {2]). Possibly its main innovation in 1975 was the R
et t
introduction of the notion of indices mod m for numbers m which have no primitive "..:
‘l “
roots in the classical sense, like m = 100: The indices introduced are multiply-~ -
dimensional vectars. Qﬁ
R
14
This was in 1975. At the present time we have the pioneering paper (1) by Ulrich :«L
)
&
Oberst who shows that by appropriate abstract formulations, the Chinese Remainder Theorem p
(e
can be made the basis of much of Modern Algebra including the main theorems of Galois
theory. ~$
<
The present note assumes the reader to be familiar with the beautiful theory of \';
-~
primitive roots and indices for a modulus ® which admits a primitive root. For these 'F$
fundamental notions we refer to any book on Number Theory, for instance to Steward's book ,‘
:\.'
~
l.,“
W\
. t
3
¢ Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. The Main Problem. lLet g¢(m) denote as usual Buler's function. The integer
is a primitive root wod m, provided that the ¢(m) powers
n N=al (Ie0,1..,9m -1
form a reduced residue system (R.R.S.) wod m. We also write
(2) I=4i{nd N
and call it the index of N mod m. Notice that the sequence (1) can not be further
extended, because a_’(‘) = 1 mod m, by Euler's theorea.

We are here concerned with the following

Problem 1. let

(3) o= nm,, (n,,mz) =1, my>1, m>1,
and let
4) ay be a primitive root mod my (1 =1,2) .

We also assume that the product
(S) R = mn, has no primitive root .
(6) Question: Is there a way of defining indices for the product m ?

The answer: Yes, there is a way, but the indices mod m will be 2-dimensional

vectors

(7 I = (xq,%3)s (xq = 0,0, c00,9(my) = 1) x5 = 0,1,00.,9(my) ~ 1.
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et 3. The moduzlus m = 100. We are particularly interested in this modulus and choose ’:=~
e
v (8) my =4, my =25 m= 100, -~
» 'y
* . To check the assumption (4) we notice that ','
¢ N
| 4
' (9) a; =3 is a primitive root mod 4 . X
» 45'
Since ¢(4) = 2, it follows that ™
;; (10) the sequence 3t (I =20,1) is a R.R.S. mod 4 . . 3
R4 N
‘i Likewige ‘!
" .
}. (1) a; = 2 is a primitive root mod 25 . t
Since p(25) = 25 + (1 = -;-) = 20, the statement (11) is verified by the following table =
. )
v o>
N, -
d I = jindN ' ¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 e
: (12) . ::
N ' 1 2 4 8 16 7 14 3 6 12 24 23 2v WV 9 18 11 22 19 13 ,'f'
) 'y
I3 N
Verifying for (8) our assumption (5) is a little more troublesome. This requires b
s L)
E: ’ Lemma 1. For every integer a with ';
' (13) (a,100) = 1 i
" * we have .~
)l !‘\
y (14) a2% = 1 mod 100 . 'S
'| P‘-
5 Notice that i‘
(15) 0(100) = ¢(4)@(25) = 2+20 = 40 . it
’1
Since (13) implies (14), we see that there is no element of a R.R.8. mod 100 which 3
1
belongs to the exponent 40 = (100): The wmodulus m = 100 satisfies the assumption (S5). .
L)
Proof of Lemma 1. From ¢(50) = $(2)¢(25) = 20, by Euler’s theorem we have Y
a®3% - 4 noa 50 or 3
[y
(16) a%% : 1 moa s0 . .
'y oY
‘1‘ From (13) we see that a mst be an odd number, a = 2n + 1 say, and so by the binomial ‘.
o [
- theorem ha
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Since all terms of this sum are divisible by 4 we find that
(n 4la20 - 1,
From (16) we obtain a20 - 1 = 50k and now (17) shows that the factor k must be even,
hence k = 2m say, which implies the desired congruence (14).

Our answer to the question (6) is given by the following

Theorem 1. Let
(18) "= Rl (my,my) = 1,
and let

(19) a; be a primitive root mod m, (1= 1,2) .

By the Chinese remainder theorem applied twice we determinie the solutions by, and b,

of the two pairs of congruences

b1 za, mod @yr b2 £ 1 mod my .
(20)

b1 = 1 mod LY b2 z a, mod my .

Then every element N of a reduced residue system mod m is furnished just once by the

T IR
A

cong!uencea
K1 &2
(21 Eb,bz mod m (N2 1, Ngm=-1),

:’mr
e

L
Ay

.,.
L)

where

[4

l.:‘ .

(22) x, = 0,1,...,'(l‘) -1, Xy = 0,'....,'(n2) - 1.

Proof. The formula (21) and (22) gives the right number g(myle(m,) = e(m) of
elements of a R.R.S. mod m. There remains to show that no two elements
(23) by'by2, N b,:'b:&
are congruent mod m unless xq = xg and x, = xi. We do this by contradiction. We
assume
(24) (xq,x5) £ (x},x3)
and more specifically, we assume
(25) xy # x}

and we are to prove that

~ v Y} LA A Y
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(26) NAN modm.

Indeed the congruence

X4 X Xy X
(27) by'bs? 2 by byt mod m
is impossible: Clearly (27) implies that
Xq X Xy X
(20) by'b,? = b1‘b2& »od n, .

Since b, 3 1 mod m, by (20), (28) becomes
b;z H b;i mod B,y .

However, the last congruence (20) shows that also b, is a primitive root mod ™, and
this shows that our last congruence contradicts our aasumption (25) which completes the
proof of our theorem.

Definition of the index XI. The index of N is defined by the 2-~dimengional vector
(29) ind N = (x‘.xz)
having *(my)g(my) = o(m) different values. WNotice that x; may be modified mod y(m,)
(i = 1,2). We express this by saying that (xy,x3) is defined (mod g¢(m¢), mod ¢(my)).
¥We also state the important

Corollary 1. 1. There is & one-to-one mapping of the ¢(m) alements

(30) N of 4 R.R.,S. mod m,

onto the set of ¢(m) indices

(31) ind N = (xq,x5) »
where
(32) x; runs through a R.R.8. wmod '(ﬂl) (4 = 1,2) .

2, The set (N} is a multiplicative group mod m, while the set of indices

l(x,.xz)} form an additive group (mod p(m,), mod g(m,)). The mapping
(33) (N} &+ {(x4,x7)}

is an isomorphism which transforms the maltiplication mod m in the first group into

addition (mod ¢(my), mod ¢(my)) in the second group.

Remark. It should be clear how our diascussion generalizes for a modulus

(34) n=- minz---nn with (ﬂlp.j) - 1 i¢ i# j

-5e
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b and we assume that N
-
. 3
:: (35) a is & primitive root mod m (4 = 1,...,n) ,
2
B v
.;: while m certainly admits no primitive root if n > 2. lt
t
&D
e Thus for n = 3 the congruences (21) become i
" !2 !3 .
‘g N = b' bz b] mod m, (N z 1, N ‘ m=- 1) ) 4
L3 .
Q. for x; = 0,1,..0,0(m) = 1, (4 = (4,2,3) . .
»-
) The corresponding Chinese Remainder problems (20) are ;
b‘§a1-odm'. b25! Bod my. b,finodl,.
.: b‘ 2 1 mod -2, bz H .2 mod Ry, b3 21 mod my :..
o . _ - . 1
s by 31 mod m,, by = 1 mod my, by = a; mod my . Ny
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The congruences (20) become
Table of numbers N

X1 = 0,1;

b, = 51,
39

and numbers N are as follows.
7

1 mod 25,

Since ¢(4) = 2 and ¢(25) = 20,

1
1

b

We wish to apply Theorem 1 to the numbers (8); that this is

mod 100.

X X
51 177 2 nod 100,
2717983 9

1 77‘!29 3341|5789 |S53{81{37|49 (73| 21 17

N
51

Returning to the modnlus 100.

The tables of indices

4.
of Theorem 1 shows that the congruences

feasible is shown by (9) and (11).

and are found to have the solutions
furnish a R.R.S.

which are readily checked.

has no primitive roots.

AN/ R RS M



Table of indices (x,,xz)

1 3 7

1.7

The Table (39) gives the number N if ind N = (x,,xz) is prescribed, where we

locate x4 in the first column and xy in the first row. The second Table (40) gives
the index I = (x‘.xz) if N is given, where we locate the digit of tenth of N in the
first column and its digit of units in the first row.

As an example let us find the product N = 47.27 mod 100. Passing to indices we
find ind 47 = (1,17), ind 27 = (1,1), and so ind (47:27) = (1,17) + (1,1) = (2,18) =
(0,18). The first table gyives the number 69 = 47+27 mod 100.

Ag a more interesting application let us solve the congruence
141) N® z 61 moa 100 .

We pass to indices on both sides of the congruence setting ind N = (x4,x;). From the
second table we find 4ind 61 = (0,16). We obtain

4(xq4,x3) = (0,16) (mod 2, mod 20)

r' "1‘ : v' ‘ﬁ'l"""’
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which gives the two congruences
4xy z 0 mod 2, d4xz = 16 mod 20 .
The first cong~uence has the two solutions Xy = 0, 1, and the second the four solutions if'
,
x; = 4, 9, 14, 19. This gives the eight different indices (x,.x,) = (0,4), (0,9), ;"
(0,14), (0,19), (1,4), (1,9), (1.14), (1,19). The table (39) gives the corresponding ;5
numbers and shows that (41) has the eight solutions N = 41, 37, 9, 13, 91, 87, 59, 63 Ty

hence

(42) N =9, 13, 37, 41, 59, 63, 87, 91

which are readily checked on a hand-held calculator.
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5, 5. A ciraular slide-rule for the sodulug 100. If the modulus = has a primitive
14
¢
root, then the mapping (N} ¢+ ind N is an isomorphism between the multiplicative group b
. '
' mod m, and the additive group mod ¢(m). The operation on the latter are nicely . 2
N
:,' performed mechanically on a circular slide-rule. I can find no reference to this "
\t ,d'.
. mechanical device, the only notable exception being B. M. Stewart's book [3] where the L
o slide-rule nod 29 is described in Chapter 20. Wotice the prime modulus m = 29 admits ‘:"
*% *
) the primitive root a = 2. ~\'
)
For the modulus m = =m,, of (3), satisfying the assumption (5), the operations of ) Q
p) P
the additive group of
. 1od N = (x,,x,) (mod g(m,), mod y(my)) A
:’ can no longer be performed on a circular slide-rule. A notable exception is our modulus l-*:
/ o
-, m = 100 = 4:25 for the following reason: Here ¢(4) = 2, and the operations on ot
4 L
' %y m0d 2 can be done mentally, without mechanical aid. -
. The slide~rule m=mod 100 is shown in Fig. 1. It shows five increasing Conceatric ;;_
by .-*. N
" circle C‘,....Cs. each divided in 20 equal arcs. The slide rule must explicitly contain -
K4 . e
: the 1 - 1 correspondence between the get (N} of ¢(100) = 40 numbers and the set (I} .
= ((xy,x5)} of 40 indices. .
- Along the points on C‘ and c5 we place the 20 values of x, = 0,%,....13. Along .t:‘.
N o
N every radius, like x, = 3 say, we place the corresponding values vf x4y and N, which :-.-
X are x, =0, N =33 and x, = 1, N = 83, respectively, which wa find from table (39). 3
' The values 0, 33 are placed along C‘ and c3, respectively, and we repeat thea 4
i
v
- syemetrically with respect to c3, likewise we place ! and 83 near the radius of x, = 3, :-:"
. <o
and repeat them by symmetry in Cy- K {
Construction of the slide-rule: Wwe glue Pig. | on a piece of cardboard and cut the
* figure along the circle Cj3 obtaining a disk D and a ring R. Wa glue the ring R -:.::
4 '(
: onto a piece of cardboard and restore the disk D to its old place, with 4 pin in {ts :w:\
N
¢ <
y center so that the disk can turn about its center. We also mark its initial position, N
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for x5 = 0, by two arrowheads. The slide-rule so obtained performs mechanically
multiplications and division mod 100.

An example. To find

79 x 37 mod 100

we locate 79 on C3 and turn the disk by two divisions counter-clockwise until the
initial arrowhead points to 79. The number 37 on the disk now points to the pair of
possible products 73 and 23. Since for N = 79 we have xq = 1 and for 37 we have
x4 = 0, we conclude that for their product we have Xy =1+ 0=1md2. This is why we
select N = 23 rather than 73, and so

(43) 79 x 37 = 23 mod 100 .

s,

»

r,
AN

How 414 {t work? The answer: From the slide-rule we gee that for N = 79 we have

S
o

Xy = 2, and for N = 37 we have X, = 9; therefore for their product we have
xy = 2+ 9 =11 mod 203 On the slide-rule we performed the addition 2 + 9 = 11. Thus

for the product x, = 11 and this gave the possible products 73 or 23.

e i""f‘ \f*
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20. ABSTRACT - cont'd,

We also assume that

3) the modulus a = nn, admits no primitive root .

By the Chinese Remainder Theorem applied twice we determine the solutions bl
and b2 of the two pairs of congruences
blialnod-. bzsl modml.

bl luodnz, bz-azmodmz.

Then every clement N of a reduced residue system mod m is furnished just once

by the congruences

¥ *2
(4) N S b1 b2 mod m (N > 1, N<m- 1,
where
(5) xl-O'lpoc.'W(‘l) "'1; x2-°'1'o.-'¢(m2) -1 ']

where ¢{(m) is the Euler function.
We define the index of Nmod m as the 2-dim. vector
(6) ind N = (xl,xz) .

Since bi. igs a primitive root mod m, (i = 1,2) we can modify x

N mod ¢(ni)
(1 = 1,2).

i

The 1 - 1 mapping (N} ((xl.xz)}, established by (4), between the
multiplicative group (N} mod m and the additive group {(xl,xz)} (mod ¢ (m,),
mod »“(m?)) is an isomorphism.

Using this theorem the paper concludes with the construction of a circular
3lide-rule for the modulus m = 100, which admits no primitive root.
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